Growing MI Agriculture Conference

 Lansing, MI 24 Jan., 2013
Managing soil to improve infiltration and water holding capacity: Carbon management.

Don Reicosky,

(Soil Scientist, Emeritus)

Agricultural Research Service

USDA-ARS-MWA
North Central Soil Conservation Research Laboratory Morris, MN
don.reicosky@gmail.com USA

The Global Crises

Our good earth

The future rests on the thin layer of soil beneath our feet

There is pressure on our earth resources and food security!

9,000,000,000 people by 2050

We are "sandwiched" in a very fragile system!

Very thin, fragile atmosphere.
7,018,456,957 people

Very thin, fragile soil.

Carbon is Critical!

OUR HUNGRY WORLD

OUR THREATENED PLANET
OUR CHILDREN' S FUTURE
OUR ONE CHANCE... Conservation Agriculture
All rest on "OUR LIVING SOIL" that depends on soil carbon!

The "key" component is:
 carbon!

Photo Source: NASA

3 Keys to Conservation Agriculture!

Minimal soil disturbance

Continuous residue cover

Diverse rotations and/or cover crops

Soil Organic Carbon

The Carbon Cycle

 Photosynthesis
Energy Release

The devil is in the details!
Beckism \#101

View the plant as carbon!
$(\sim 45 \%$ C $)$
Plant Power
Carbon capture
Carbon storage
Energy storage
Food source
Energy source
Soil carbon input
Environmental benefits

Quality of Life

Conservation depends on plant management!

Carbon is the " C " that starts "C"onservation!

Conservation is our first step toward food security!

Soil organic matter acts like a "sponge" for water retention and release to plants.

sponge

SOM "sponge"

Soil high in carbon is rich in "spongy organic matter" that releases nutrients to crops and holds more than its own weight in water.

Available water capacity (AWC) is analogous to a bucket. The larger the "bucket", the more water stored available to the plants.

Source: Dept. of Agriculture Bulletin 462, 1960

SOM increases available water holding capacity!

Sand soil

Available Water holding Capacity (AWC) (cm H2O/ 25 cm soil) (in. H2O/ ft. soil)
2.6 cm 1.25 in .

3%
1.0 cm
1.5 cm
0.48 in .

SOM = 0\% soil matrix water

Source: Berman Hudson, 1994. JSWC 49:189-194.

Silt loam soil

Available Water holding Capacity (AWC) (cm H2O/ 25 cm soil)
 (in. H2O/ ft. soil)

4.2 cm
2.02 in .
3.2 cm 1.54 in .
2.3 cm 1.10 in .

SOM = 0\%

soil matrix water

Source: Berman Hudson, 1994. JSWC 49:189-194.

Carbon is the center of the "Soil Magic Triangle".

Soil degradation: 1. Inversion tillage
2. Crop residue removal

Soil restoration: 1.No tillage systems
2. Crop residue retention + cover crops

Source: Jerry Hatfield

No. 1 Environmental Enemy in Production Agriculture

Tillage-induced Carbon Dioxide Loss

Invisible effects of invisible forces!

Strip Tillage \#1 3 June 1997 Swan Lake Cumulative Carbon Dioxide Loss after 24 hours

$\begin{array}{lllllllll}0 & 250 & 500 & 750 & 1000 & 1250 & 1500 & 1750 & 2000\end{array}$ Cross Sectional Area Loosened Soil (cm²)

Tillage intensity
Figure 1. Fuel use as related to tillage intensity (data from Archer and Reicosky 2009).

Previous work showed tillageinduced CO_{2} emissions were proportional to soil volume disturbed.

Niti

What do large "no till" seeders due to CO_{2} emissions?

$\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$ loss from Low vs High Disturbance Drills

There's a jungle full of life living in your belly button!

There's a jungle full of life living in your soil!

The bellybutton project is out to "educate the public about the role of bacteria play in our world. Bacteria are always present on our skin and in our bodies."

What's in your belly

Your belly button is crawling with billions of bacteria, in all shapes, sizes and appetites.

It' s warm, dark and moist, a perfect home for bacteria.

The tiny bacteria in the "jungle of microbial diversity" are generally harmless.

Everybody's bellybutton carries a different cast of characters.

Minneapolis Star Tribune, 12/7/2012.
Jiri Huler, Lead scientist, NCSU

What's in your

Your soil is crawling with billions of critters (bacteria, fungi, arthropods, nematodes, worms, and animals) in all shapes, sizes and appetites.

The temperature is variable, it's dark and moist, a perfect home for soil biology.

The tiny critters in the "jungle of microbial diversity" are generally harmless.

Everybody's soil carries a different cast of characters.

** Soil Biology Team ** The "living soil"

Earthworms, insects and rodents are the most visible components of the "living soil" team. They work in tandem either soil microorganisms and fungi to contribute to aeration and nutrient cycling as part of a "soil factory" team effort.

Intensive Tillage destroys the biological and ecological integrity of the soil system.

Before
Primary
Tillage

After
Primary
Tillage

After
Secondary
Tillage

Intensive soil tillage opens the "all you can eat buffet" for the birds and microbes.

Earthworms are allergic to cold steel! mike Bell

$$
\begin{aligned}
& \text { Tillage creates twin problems: } \\
& \text { - Accelerated soil degradation } \\
& \text { - Accelerated soil erosion }
\end{aligned}
$$

EWW?

"Turmoil of Tillage"

The soil is a natural living system that contains a lot of life and when tilled intensively is dramatically changed. It can be considered analogous to human reaction to a combination of:
earthquake

all rolled into one perturbation event!

"Carbon" coverings for the soil!

Dead crop residue =

 "passive protective blanket"Both are food sources for the soil biology!

Live crop biomass = "active protective blanket"

Which is better for the soil biology? "Pulling" iron?
 VS "Pushing" carbon!

Natural Fertility

Crop biomass ~ 46 \%C

Soil organic matter $=58$ \%C Difference = 12 \%C

C, H, O, N

Terminology Transition away from Tillage

We need to change our vocabulary!

Emphasize conservation
De-emphasize tillage
Emphasize crop residue management De-emphasize soil disturbance

\rangleCarbon Management Conservation without compromise!

Conservation tillage is a broad term used to define "any" tillage system with primary objective of "reducing soil and water loss."

Conservation tillage, however, has "loose limits" on the definition of soil disturbance and residue management.

"Conservation Tillage" dilemma

"Conservation Tillage" terminology leads to confusion due to the diversity of machinery that leads to the wide range of soil disturbance and crop residue burial. We need more attention to quantitative details in understanding the most critical factors for soil degradation related to soil tillage and crop residue removal/burial.

Conservation:

"Touch the earth lightly, use the earth gently, Nourish the life of all the world in our care."

The action of conserving something, in particular. Preservation, protection, or restoration of the natural environment, natural ecosystems, vegetation, and wildilfe.

Conservation is a word to be respected, revered and used to describe agriculture. However, conservation does not belong in the same sentence with tillage.

What is Conservation Tillage?

The phrase "conservation tillage" is an oxymoron. An oxymoron is a figure of speech in which incongruous or contradictory terms appear side by side.

Any form of intensive tillage is not a form of conservation for the way intensive tillage degrades and fractures the natural soil structure. Tillage destroys or disturbs the ecosystems of soil fauna so important for nutrient cycling. Tillage moves the soil down slope via tillage erosion. Intensive tillage loosens the soil and buries the crop residue, allowing the soil to dry, setting up the system for severe erosion with the next high-intensity rainfall event.

Most disturbance

Tillage Soil Disturbance Continuum

Conventional Tillage

Conventional Tillage

Zero Conservation Much tillage

"Conservation Tillage" II
Some Conservation Some tillage

Direct Seeding

II

Much Conservation Zero tillage

Conventional tillage $=$ inversion tillage Conservation tillage $=$ non-inversion tillage Direct seeding is close to natures way!

Nature's
way

Biological tillage

No till

Minimum
disturbance to 5 cm

Conservation tillage

Non-inversion tillage to 46 cm

Conventional tillage

Inversion tillage to 30 cm

"Connect the dots around Conservation Agriculture"

Soil Carbon Sequestration

Environmental benefits are spokes that emanate from the Carbon hub.

- increased water holding capacity and use efficiency
- increased cation exchange capacity
- reduced soil erosion
- improved water quality
- improved infiltration, less runoff
- decreased soil compactior
- improved soil tilth and structure
- reduced air pollution

Carbon

- reduced fertilizer inputs - increased soil buffer capacity - increased biological activity - increased nutrient cycling and storage
- increased diversity of microflora
- increased adsorption of pesticides
- gives soil aesthetic appeal
- increased capacity to handle manure and other wastes
- more wildlife

Agriculture's Wheel of Fortune!

Conservation as in Conservation

 Agriculture is our only option.

Save a little time Save a little money Save little carbon Save a little planet

Credit: Ken Scott, Clear Lake, IA

Best done with Conservation Agriculture!

